

Theme: Clinical / Biology

Abstract No: PTCOG-AO2025-ABS-0062

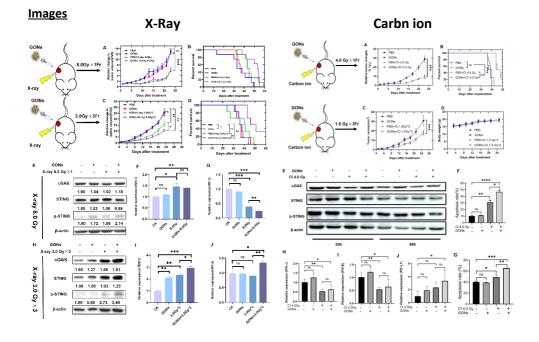
Abstract Title: Comparative Study on Radiation Sensitization Effects of

Different Radiation Beams on Gadolinium Oxide Nanoparticles

Author Names: Boyi Yu, Xiaodong Jin, Weigiang Chen, Qiang Li

The Affiliation :Institute of Modern Physics, Chinese Academy of Sciences. China.

Background / Aims:


- Triple-negative breast cancer (TNBC) exhibits inherent resistance to radiotherapy.
- Gadolinium oxide nanoparticles (Gd₂O₃ NPs) exhibit considerable potential as a promising candidate for radiosensitization applications.
- This study investigates whether gadolinium oxide nanoparticles (Gd₂O₃ NPs) can differentially enhance the radiosensitivity of TNBC to X-ray versus carbon-ion irradiation.

Subjects and Methods:

- Using 4T1 murine TNBC cells, we evaluated the radiosensitizing effects of Gd₂O₃ NPs in vitro through clonogenic survival assays, proliferation analysis, apoptosis detection, and reactive oxygen species (ROS) measurement.
- A tumor-bearing mouse model was employed for in vivo validation.
- The activation of the cGAS-STING pathway and subsequent immune response were assessed via RT-qPCR and Western blot analysis.

Result:

• In vitro experiments demonstrated that Gd₂O₃ NPs significantly potentiated the cytotoxic effects of both X-ray and carbon-ion irradiation by augmenting ROS generation and apoptosis induction. In vivo, however, only fractionated X-ray irradiation combined with Gd₂O₃ NPs exhibited a pronounced radiosensitizing effect, leading to enhanced activation of the cGAS-STING pathway and increased intratumoral infiltration of CD8+ T cells.

